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0 A Few Words (You Don’t Have To Read These)

Hi, welcome to my crappy notes.

It is July 29th when I started this document, and we’re already way past the flow stuff. But, the
current problem set talks about Frobenius Theorem, so I better get this organized. Anything before
this though. . . Maybe I’ll never get a chance to type those out. :pensive:

The point of this document, originally, was to throw all the definitions and important results in one
place without too much detail so I can easily access them - it’s not easy to be a math student with a
memory as shitty as mine. It seems, however, that I began making a lot of side comments for myself to
explain the concepts, which made it not as skeletal as it was supposed to be. But the organizing and
writing of these notes greatly helped me make sense of the math, so I am at peace with my infidelity
to my original intentions.

In the formatting of this document, I stayed away from using the “Definition” environment (simply
because there are way too many definitions), but rather just put the name of the object which is to
be defined (or the property which is to be explained) in the title of the paragraph, and hence it is
in boldface. This conveniently makes it pop more, so I can find it easier when frantically searching
through my notes for a definition. Other environments such as theorem or proposition are all kept
as usual. Additionally, I use a bit of colour-coding in this document (though it is not detrimental to
anyone’s understanding even if it weren’t coloured). Words in purple are me talking to myself and
other additional notes. Words in red are points of confusion that I should clear up soon.

Okay, enjoy!
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1 Flows, Lie Derivatives, Frobenius

1.1 Flows

Let p ∈M and let X ∈ X(M) be a smooth vector field.

Integral Curve γ : (a, b) ⊂ R → M is an integral curve of X starting at p if γ′(t) = Xγ(t) and
γ(0) = p. We call it a maximal integral curve if its domain cannot be extended.

Proposition 1.1 (Existence of Local Flows). Let U be a coordinate open set and p ∈ U , let X ∈
X(M), then there exists ε > 0 and neighbourhood W ⊂ U of p and a C∞ map F : (−ε, ε) ×W → U ,
called the local flow near p generated by the vector field X, such that

∂

∂t
F (t, q) = XF (t,q) and F (0, q) = q

This means that for each fixed q ∈ W , the map t 7→ Ft(q) := F (t, q), called the flow line of the local
flow, is an integral curve of X starting at q defined on (−ε, ε).

Global Flow If F is defined on R×M then we call it a global flow.

Complete Vector Field A vector field that admits a global flow is called a complete vector field.

Theorem 1.2 (Fundamental Theorem of Flows). Let X ∈ X(M). Then:

1. For any p ∈M , there exists a unique maximal integral curve starting at p.

2. There exists a unique maximal flow generated by X.

1.2 Don’t Lie To Me

1.2.1 Lie Derivative of Vector Fields

Lie Derivative of Vector Fields Given two smooth vector fields X,Y ∈ X(M) and a point p ∈M ,
the Lie derivative of Y in the direction of X at p is

LXY |p = lim
t→0

F−t∗,Ft(p)(YFt(P ))− Yp
t

The first term on top F−t∗,Ft(p)(YFt(P )) : R → TpM is a vector in TpM for every t. This limit always
exists, and also LXY ∈ X(M) is another smooth vector field.

Think of the picture of the “flow a tangent vector from Y on X and see if it matches up with the
X tangent vector of the flow.”

Let H(t) = F−t∗,Ft(p)(YFt(P )) where H : D(p) → TpM . Here D(p) is the maximal interval in which
the maximal integral curve starting at p is defined. We see that H ′(0) = LXY |p = 0 by the classic
definition of a limit. Note that this is an important proof technique when dealing with Lie derivatives,
it’s helpful to think of the complicated limit in terms of a derivative of a single-variable function.

Invariant Under Flow A vector field Y is invariant under the flow of X if Ft∗,p(Yp) = YFt(p) for

all p ∈M and t ∈ D(p).

Now suppose X,Y ∈ X(M) are complete. X has flow F with time variable t, and Y has flow G with
time variable s.

3



Commuting Flows The flows of X and Y commute if Ft ◦Gs = Gs ◦ Ft for all s, t ∈ R.

Theorem 1.3 (Properties of Lie Being 0). Let X,Y ∈ X(M) be complete. The following are equivalent:

1. LXY = 0

2. Y is invariant under the flow of X

3. Ft, the flow of X, sends integral curves of Y to integral curves of Y

4. the flows of X and Y commute

5. LYX = 0

1.2.2 Lie Derivative of Functions

Let f ∈ C∞(M) and X ∈ X(M).

Lie Derivative of Functions For f ∈ C∞(M), we define the Lie derivative to be

LXf(p) = lim
t→0

F ∗t (f)(p)− f(p)

t
= X(f)|p =

d

dt

∣∣∣∣
t=0

f ◦ Ft(p)

Some computations here is confusing. Let γ(t) := Ft(p) be the flow of X starting at p, then we can

write not only that d
dt

∣∣∣∣
t=0

f ◦Ft(p) = ˙(f ◦ γ)(0) where the dot notation represents the usual derivative,

but on the other hand we also have d
dt

∣∣∣∣
t=0

f ◦ Ft(p) = f∗,F0(p) ◦ γ∗,0 = (f ◦ γ)∗,0. Then, as velocity

vectors or tangent vectors in T0M , we get that

˙(f ◦ γ)(0)
d

dt

∣∣∣∣
t=0

= (f ◦ γ)∗,0
d

dt

∣∣∣∣
t=0

We feed the identity function to both sides to get

number︷ ︸︸ ︷
˙(f ◦ γ)(0)

d

dt

∣∣∣∣
t=0

(id)︸ ︷︷ ︸
vector eats id, gives 1

= f∗,p

def of flow︷ ︸︸ ︷
◦γ∗,0

(
d

dt

∣∣∣∣
t=0

)
(id)︸︷︷︸

coord vector wrt chart

= f∗,0(Xp)(id) = Xp(id ◦ f)

= Xp(f) = X(f)|p

1.2.3 Lie Bracket

The big theorem here is this:

Theorem 1.4 (Lie Derivative is Lie Bracket).

LXY = [X,Y ]

Lie Bracket Let X,Y ∈ X(M), their Lie bracket is defined to be

[X,Y ] = XY − Y X ∈ X(M)
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Commuting Vector Fields We say X and Y ∈ X(M) commute if [X,Y ] = 0. This means that for
all f ∈ C∞(M)

XY (f) = Y X(f)

Proposition 1.5 (Properties of Lie Bracket). The Lie bracket has the following properties:

1. R-bilinearity

2. [X,Y ] = −[Y,X]

3. Jacobi identity: ∑
cyclical

[X, [Y, Z]] = 0

or, more specifically,
[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

Now we define some algebra stuff that we didn’t learn in third year abstract algebra.

Lie Algebra A Lie algebra over R is a vector space V over R together with a product [·, ·] : V ×V →
V , called the bracket, which satisfies the three properties above.

Algebra An algebra over R is a vector space V over R with a product · : V × V → V making V a
ring satisfying the homogeneity condition, a(X · Y ) = aX · Y = X · aY .

A Lie algebra is not necessarily a ring because the bracket doesn’t have to be associative. However,
any algebra admits a Lie bracket (defined above, but using whatever · was in the generic algebra)
which makes it a Lie algebra.

Derivation A derivation on a Lie algebra V is a map D : V → V that is R-linear with respect
to the vector space structure and satisfies the Leibniz rule with respect to the bracket: D[X,Y ] =
[DX,Y ] + [X,DY ]. Indeed, for X ∈ X(M), LX : X(M) → X(M) is a derivation on the Lie algebra
X(M).

Proposition 1.6 (Properties of Lie Derivative). The Lie derivative satisfies the following properties:

1. LXY = −LYX

2. LX [Y, Z] = [LXY, Z] + [Y,LXZ since LX is a derivation on X(M)

3. L[X,Y ]Z = LXLY Z − LY LXZ

4. Let g ∈ C∞(M), then LX(gY ) = (LXg)Y + gLXY

Claim 1.7 (Coordinate Vector Fields Commute). Let (U, φ = (x1, ..., xn)) be a chart, then by Clairaut’s
theorem, for all f ∈ C∞(U), we have

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

Hence, [ ∂
∂xi ,

∂
∂xj ] = 0, so coordinate vector fields commute.

k-Frame If the k smooth vector fields X1, .., Xk ∈ X(M) are such that X1p, ..., Xkp are linearly
independent for all p ∈M , then we call them a k-frame.
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1.3 Frobenius

Distribution For p ∈ M , choose a k-dimensional subspace ∆p ⊂ TpM . A rank-k distribution is
∆ = ∪∆p ⊂ TM . Basically, at each p we have a k-dim subspace of the tangent space, and we just put
these all together and it’s like a choice of k vector fields, kind of.

Smooth Distribution A rank-k distribution ∆ is smooth if for all p ∈M , there is a neighbourhood
U ⊂M of p and X1, ..., Xk ∈ X(U) such that ∆q = span{X1q, ..., Xkq}, for all q ∈ U .

Local Frame In the above case, say X1, ..., Xk ∈ X(U) is a local frame of ∆ near p. Treat it as a
basis of the chosen k-dim subspace at p.

Section A section of ∆ is a map X : M → ∆ ⊂ TM such that π ◦ X = id. If ∆ is smooth, then
denote the space of smooth sections of ∆ by Γ(∆), and Γ(∆) ⊂ Γ(M) = X(M).

Integral Submanifold Let ∆ be a smooth rank k distribution. For p ∈ M , if there exists a
submanifold S containing p with the property that TqS = ∆q for all q ∈ S, then we call S an integral
submanifold of ∆. This means that each of the k vector fields (chosen in the distribution) in ∆ is
tangent to S, some k-dim submanifold.

Integrable A smooth rank k distribution ∆ is integrable if for all p ∈ M , there exists an integral
submanifold of ∆ containing p.

Involutive A smooth rank k distribution ∆ is involutive if for every local frame X1, ..., Xk of ∆, we
have that [Xi, Xj ] ∈ Γ(∆), i.e.,

[Xi, Xj ] =

k∑
`=1

c`ijX` for clij ∈ C∞(U)

This is equivalent to saying that Γ(∆) is a Lie subalgebra of Γ(M).

Theorem 1.8 (Frobenius Theorem). A smooth rank-k distribution ∆ is integrable iff it is involutive.

Flat Chart We say that a chart (U, φ) is flat for ∆ if for any q ∈ U , with φ(q) = (q1, ..., qn), the set
Sq = {xk+1 = qk+1 = · · · = xn = qn = 0} defined by the vanishing of the last n− k coordinates is an
integral submanifold of ∆ containing p.

Completely Integrable ∆ is completely integrable if there exists a flat chart near every point.

Theorem 1.9 (Strengthed Frobenius Theorem). Given a smooth rank k distribution ∆, the following
are equivalent:

• ∆ is completely integrable.

• ∆ is integrable.

• ∆ is involutive.
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2 Covector Fields, Differential 1-forms

Let M be a manifold and let p ∈M .

2.1 Dual Vectors

You thought tangent vectors were confusing? Well, we were just beginning! Now we will define a
whole new world of things called dual vectors on top of the already-confusing tangent vectors. Haha!
#getrekt.

Dual Vectors, Covectors T ∗pM := {f : TpM → R | f is linear}.

Dual Basis Let {v1, ..., vn} be a basis of TpM . Define θi ∈ T ∗pM by θi(vj) = δij . Then, {θ1, ..., θn}
is a basis for T ∗pM and it is called the dual basis of {v1, ..., vn}.

Covector Field We define a covector field as a choice of a covector in T ∗pM at each point p. This
is a map p 7→ θ ∈ T ∗pM which eats vector fields and gives functions.

Cotangent Bundle The cotangent bundle is:

T ∗M : = ∪p∈MT ∗pM
= {(p, θ) | p ∈M, θ ∈ T ∗pM}

We have the natural map π : T ∗M →M defined by (p, θp) 7→ p where θp ∈ T ∗pM .

Topology on T ∗M Lazy. Refer to lecture notes. It’s roughly the same idea as when we did it for
TM .

2.2 Differential 1-forms

1-form A section ω of T ∗M as a map ω : M → T ∗M satisfying π ◦ ω : idω. This is, like, a covector
field. This is also known as a differential 1-form.

Smooth 1-form As you might have guessed already, a smooth 1-form ω is a C∞ section of T ∗M .

Differential For f ∈ C∞(M), we defined the 1-form df : M → T ∗M where dfp ∈ T ∗pM is defined
for v ∈ TpM by

dfp(v) = v(f) = f∗,p(v)(id)

Proposition 2.1 (differential of f at p). The following diagram commutes:

TpM R

Tf(p)R
f∗,p

dfp

φ

where φ(c) = c ddx |x=f(p. Under the identification Tf(p)R ∼= R, we have f∗,p“ ∼=”dfp. Both are called
the differential of f at p.

Coordinate Dual Basis Let (U, φ = (x1, ..., xn)) be a coordinate chart near p. Then xi ∈ C∞(U),
and so dxi is a 1-form satisfying

dxip

(
∂

∂xi

∣∣∣∣
p

)
=

∂

∂xi

∣∣∣∣
p

(xi) = δij

So {dx1
p, ..., dx

n
p} is the dual basis of

{
∂
∂x1

∣∣∣∣
p

, ..., ∂
∂xn

∣∣∣∣
p

}
, and we call it the coordinate dual basis.
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Independence of Coordinate Chart For any f ∈ C∞(U), we have dfp = aidxip for ai ∈ R.

Applying ∂
∂xi

∣∣∣∣
p

to both sides, we get:

∂f

∂xi

∣∣∣∣
p

= dfp

(
∂

∂xi

∣∣∣∣
p

)
= aidxip

(
∂

∂xi

∣∣∣∣
p

)
= aj

Hence, we know df = ∂
∂xi dx

i on U . In a different coordinate chart, (U,ψ = (y1, ..., yn)), we get

df = ∂
∂yi dy

i. Note that

∂f

∂yi
dyi =

∂f

∂xj
∂xj

∂yi
∂yi

∂xk
dxk

=
∂f

∂xj
δjkdx

k

=
∂f

∂xi
dxi

2.3 Smoothness Criteria for 1-forms

Now we present two more criteria for the smoothness of 1-forms.

Action of 1-forms on X(M) A 1-form ω acts on X(M); it eats X ∈ X and spits out ω(X) ∈ C(M),
a real-valued function on M . For X ∈ X(M), define ω(X) : M → R by p 7→ ωp(Xp). This function eats
a point p, uses X to choose a tangent vector Xp, and then applies ω to it. This action is C∞-linear.
What’s even better is the following theorem:

Theorem 2.2. Let A : X(M) → C∞(M) be a C∞-linear map. Then there exists a unique smooth
1-form ω such that the action of ω on X(M) coincides with A.

Lemma 2.3. A(X)(p) only depends on Xp, i.e., A(X)(p) = A(Y )(p) ⇐⇒ A(X − Y )(p) = 0

Proposition 2.4 (C∞ Criterion for 1-forms). Let ω : M → T ∗M be a 1-form. The following are
equivalent:

1. ω is smooth as a section over T ∗M .

2. On any chart (U, φ), we have ω = aidx
i where ai ∈ C∞(U).

In particular, dxi are smooth 1-forms on U .

3. By its action on X(M), ω(X) ∈ C∞(M) whenever X ∈ X(M).
This says: any smooth 1-form ω defines a C∞-linear map ω : X(M)→ C∞(M)

Space of Smooth 1-forms We denote the space of all smooth 1-forms by Ω1(M). It is simultane-
ously the space of all smooth sections of T ∗M and the space of all ω : X(M) → C∞(M) such that ω
is C∞-linear. It is a module over C∞(M), and a vector space over R. In fact:

Proposition 2.5 (Module Isomorphism of Ω1(M)). Now that we have the three equivalent definitions,

we have that Φ :

{
smooth sections ω : M → T ∗M

}
→
{
ω : X→ C∞(M)

∣∣∣∣ω is C∞-linear

}
defined by

ω : M → T ∗M 7→ ω : X(M)→ C∞(M)

X 7→
(
ω(X) : p 7→ ωp(Xp)

)
is an isomorphism of modules.

8



2.4 Pullback of 1-forms

Let F : N →M be a C∞ map. Recall that F∗,p : TpN → TF (p)M is the pushforward of F at p.

TpN TF (p)M

R(θ◦F∗,p)∈T∗
pN

F∗,p

θ∈T∗
F (p)M

Pullback of a covector Given a dual vector θ ∈ T ∗F (p)M , the pullback by F is defined to be

F ∗,p : T ∗F (p)M → T ∗pN

θ 7→ θ ◦ F∗,p

Even though vector fields cannot always be pushed forward, the fun thing about 1-forms is that they
can always be pulled back.

Pullback of a 1-form Let ω be a 1-form on M , then the pullback of ω is a 1-form on N defined by

F ∗ω : N → T ∗N

p 7→ (F ∗ω)p = F ∗,p(ωF (p)) = ωF (p) ◦ F∗,p

By its action as a 1-form on X(N), F ∗ω satisfies, for X ∈ X(M),

F ∗ω(X)(p) = (F ∗ω)p(Xp)

= ωF (p) ◦ F∗,p(Xp)

If F is a diffeomorphism, then F ∗ω(X) = ω(F∗(X)). So we can write F ∗ω = ω ◦ F∗.

Proposition 2.6 (Properties of Pullback). These are the properties of the pullback of a 1-form:

1. F ∗(gω) = F ∗(g)F ∗(ω) = (g ◦ F )F ∗(ω).

2. if g ∈ C∞(M), then F ∗(dg) = d(F ∗g) = d(g ◦ F ).

3. if ω ∈ Ω1(M), then ω ∈ Ω1(N) and F ∗ : Ω1(M) → Ω1(N) and is R-linear with respect to the
vector space structure of Ω1(M) and Ω1(N).

I give an example for the k-form case later, on page 13.
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3 Tensors Make Me Tense, Differential Forms Make Me Tenser

Maybe if I keep learning about tensors and forms, by the 20th time around I’ll finally be able to wrap
my head around them?

3.1 Alternating Tensors

Let V be a vector space. This is all so technical, I hate it.

k-Tensor A k-tensor is a map T :

k times︷ ︸︸ ︷
V × · · · × V → R that is multilinear, i.e. linear in each component.

Signed k-Dimensoinal Volume Meter We are interesed in tensors that give us a notion of a
signed k-dimensoinal volume meter, which means that it satisfies the following:

1. f : V × · · · × V → R is defined by (v1, ..., vk) 7→ the signed k-dim volume of parallelepiped
Pv1,...,vk .

2. f is multilinear

3. f is alternating, i.e. f(v1, ...vi, ..., vj , ..., vk) = −f(v1, ..., vj , ...vi, ..., vk).

Alternating k-Tensor An alternating k-tensor or a k-covector is a k-tensor on V that is alternating.

Proposition 3.1 (Properties of Alternating k-Tensor). Let f be a k-tensor. The following are equiv-
alent:

1. f is alternating.

2. f(v1, ..., vk) = 0 whenever vi = vj for some i 6= j.

3. f(v1, ..., vk) = 0 whenever v1, ..., vk are linearly dependent.

4. for any σ ∈ Sk, σf(v1, ..., vk) = f(vσ(1), ..., vσ(k)) = sgn(σ)f(v1, ..., vk).

Example 3.1. Let θ1, θ2 ∈ V ∗ be dual vectors. Then the wedge product of dual vectors, θ1 ∧ θ2 :
(v1, v2) 7→ θ1(v1)θ2(v2)− θ1(v2)θ2(v1), is an alternating 2-tensor.

Denote by Tk(V ) the vector space of k-tensors.
Denote by Ak(V ) the vector space of alternating k-tensors.
Denote by Sk(V ) the vector space of symmetric k-tensors.

Sym Operator Define the projection operator Sym : Tk(V )→ Sk(V ) by

f 7→ 1

k!

∑
σ∈Sk

σf

Then Sym(f) = f iff f is symmetric.

Alt Operator Similarly, define Alt : Tk(V )→ Ak(V ) by

f 7→ 1

k!

∑
σ∈Sk

sgn(σ)σf

Then Alt(f) = f iff f is alternating.

Tensor Product The tensor product ⊗ : Tk(V )× Tl(V )→ Tk+l(V ) for f ∈ Tk(V ), g ∈ Tl(V ) by

f ⊗ g(v1, ..., vk, w1, ..., wl) = f(v1, ..., vk)g(w1, ..., wl)

The tensor product is associative, i.e. f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h, so we can just write f ⊗ g ⊗ h.
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3.2 Wedge Product

Wedge Product Define the wedge product ∧ : Ak(V )×Al(V )→ Ak+l(V ) by

f ∧ g =
(k + 1)!

k!l!
Alt(f ⊗ g) =

1

k!l!

∑
σ∈Sk+l

(sgnσ)σ(f ⊗ g)

Note that when f ∈ A0(V ) = R, we have f ∧ g := fg

Multi-index Read the definition and properties of the multi-index notaton by clicking on this para-
graph and going to the hyperlinked Wikipedia page.

Proposition 3.2 (Properties). These are the properties of ∧ : Ak(V )×Al(V )→ Ak+l(V )

1. Bilinearity

2. Let {e1, ..., em} be a basis for V , and {α1, ..., αn} be the dual basis of V ∗ = T1(V ) = A1(V ). For
any indexing set I = {i1, ..., ik} ⊂ {1, ..., n} such that 1 ≤ i1 < · · · < ik ≤ n, we have the unique
alternating k-tensor αI satisfying

αI(eJ) = δIJ

for any multi-index J in ascending order. Then, {αI : multi-index in ascending order} makes a
basis for Ak(U), and so dim(Ak(U)) =

(
n
k

)
.

3. αI ∧ αJ = αIJ

4. Associativity: (f ∧ g) ∧ h = f ∧ (g ∧ h)

5. Anti-commutativity: f ∧ g = (−1)lkg ∧ f

6. For any θ1, ..., θk ∈ V ∗ and any v1, .., vk ∈ V ,

θ1 ∧ · · · ∧ θk(v1, ..., vk) = det(θi(vj))

In fact, the wedge product is the unique bilinear, associative, and anti-commutative product Ak(V ) ×
Al(V )→ Ak+l(V ) satisfying αI = αi1 ∧ · · · ∧ αik .

Alternating Tensors With the new understanding from tensor products, denote the vector space
of alternating k-tensors Ak(V ) by Λk(V ∗) = span{αi1 ∧ · · · ∧ αik |1 ≤ i1 < · · · < ik ≤ n}, and define

Λ(V ∗) =

n⊕
k=0

Λk(V ∗)

Claim 3.3 (Algebraic Property of Lambda). The wedge product makes Λ(V ∗) an associative anticom-
mutative graded algebra of dimension 2n. See definitions below.

Graded Algebra An algebra A over R is graded if it can be written as a direct sum of vector spaces
Ak over R,

A =

∞⊕
k=0

Ak

such that the multiplication map sends Ak ×Al → Ak+l.

Anticommutativity A graded algebra is anticommutative if t satisfies ab = (−1)lkba for all a ∈ Ak,
b ∈ Al.
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3.3 Intro to Differential Forms

Let M be a smooth manifold, p ∈M , and (U, φ) a chart near p. Then:

•

{
∂
∂x1

∣∣∣∣
p

, ..., ∂
∂xn

∣∣∣∣
p

}
is the coordinate basis for TpM

• {dx1
p, ..., dx

n
p} is the coordinate dual basis

• {dxi1p ∧ · · · ∧ dxikp | 1 ≤ i1 < · · · ik ≤ n} is a basis for Λk(T ∗pM).

Bundle of Alternating k-Tensors The bundle of alternating k-tensors is Λk(T ∗M) :=
⋃
p∈M Λk(T ∗pM),

which comes with the map π : Λk(T ∗M)→M defined by (p, ωp) 7→ p where ωp ∈ Λk(T ∗pM).

Section, k-Forms A section of Λk(T ∗M) is a map ω : M → Λk(T ∗M), where p 7→ (p, ωp) with
ωp ∈ Λk(T ∗pM), such that π ◦ ω = idM . Sections of Λk(T ∗M) are called differential k-forms.

FORMS PICK OUT TENSORS AT POINTS! You feed a point to a form, and it goes “hmm
this one” and gives you a tensor at that point.

Wedge Product Extended Let ω be a k-form, ν be an l-form on M , we can defined the wedge
product which is a k + l form:

ω ∧ ν : M → Λk+l(T ∗M)

p 7→ (p, (ω ∧ ν)p := ωp ∧ νp

So, since dxIp = dxi1p ∧ · · · ∧ dxikp , for all p ∈ U , then dxI = dxi1 ∧ · · · ∧ dxik

Action of k-Forms On X(M) We can define the action of k-forms on X(M). For X1, .., Xk ∈ X(M),

ω(X1, ..., Xk) : M → R
p 7→ ωp(X1p, ..., Xkp)

This action ω : X(M) × · · · × X(M) → C(M) (where C(M) is the space of real-valued functions on
M) is C∞-linear.

Smoothness Criteria for k-Forms Let ω be a 1-form. The following are equivalent:

1. ω is smooth as a section

2. on any chart, ω = cIdx
I on U where cI ∈ C∞(U)

3. the action on X sends vector fields to a smooth function, i.e. ω(X1, ..., Xk) ∈ C∞(M) whenever
X1, ..., Xk ∈ X(M).

Thus, Φ :

{
smooth sections ω : M → Λk(T ∗M)

}
→
{
ω : X(M) × · · · × X(M) → C∞(M) where ω

is C∞-multilinear and alternating

}
defined by (ω : M → Λk(T ∗M)) 7→ (ω : X(M) × · · · × X(M) →

C∞(M)) is an isomorphism of modules over C∞(M).

Vector Space of k-Forms We can define the vector space of C∞ differential forms on n-dimensional
manifold M to be the direct sum

Ω∗(M) =

n⊕
k=0

Ωk(M)

With the wedge product, Ω∗(M) is an associative anticommutative graded algebra.
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3.3.1 Pullback of k-Forms

Today is August 18, the day before the final, and I have only learned how to do this today thanks
to thomas. Let’s see if I can put it into words.

Let F : N →M be a C∞ map.

Pullback of k-Covector We defined the pullback of k-covectors by F as

F ∗,p : Λ(T ∗F (p)M)→ Λ(T ∗pN)

θ 7→ F ∗,p(θ) : (v1, ..., vk) 7→ θ(F∗,pv1, ..., F∗,pvk)

which has the property that for θ1 ∈ Λk(T ∗F (p)M) and θ2 ∈ Λl(T ∗F (p)M),

F ∗,p(θ1 ∧ θ2) = F ∗,p(θ1) ∧ F ∗,p(θ2) ∈ Λk+l(T ∗F (p)M)

Pullback of k-Form For ω ∈ Ωk(M), define the pullback by F by

F ∗ω : N → Λk(T ∗N)

p 7→ (p, F ∗,p(ωF (p)))

who has the property that for ω ∈ Ωk(M) and η ∈ Ωl(M),

F ∗(ω ∧ η) = F ∗ω ∧ F ∗η

and we can write this in coordinates as

F ∗(ω) = F ∗(aIdxI)

= (aI ◦ F )d(xi1 ◦ F ) ∧ · · · ∧ d(xik)

which means that F ∗ω ∈ Ωk(N) is now a k-form on N , so F ∗ : Ωk(M)→ Ωk(N).

Proposition 3.4 (Properties of Pullback). To summarize, we have:

1. F ∗ is R-linear

2. F ∗(ω ∧ η) = F ∗ω ∧ F ∗η

3. if ω ∈ Ωk(M), then F ∗ω ∈ Ωk(N)

Example 3.2. Suppose F : R2 → R2 is given by F (x, y) = (xy, ex) = (u, v) and ω = xdy ∈ Ω1(R2),
verify that F ∗dω = dF ∗ω. We can compute the following things:

• dω = dx ∧ dy

• DF =

(
y x
ex 0

)
, which means dF 1 = ydx + xdy for the first component function F 1, and

dF 2 = exdx.

• Since u ◦ F = xy and v ◦ F = ex, we have

F ∗ω = (F ∗u)(d(F ∗v))

= (u ◦ F )d(v ◦ F )

= xyexdx

• dF ∗ω = xexdy ∧ dx

• F ∗(dω) = dF 1 ∧ dF 2 = (xdy) ∧ (exdx) = xexdy ∧ dx

13



4 Cartan Calculus

4.1 Exterior Derivative

The exterior derivative is “defined” by the following properties, which would allow for Stokes’ Theorem.

Theorem 4.1 (Exterior Derivative Desired Properties). There exists a collection of R-linear maps,
called the exterior derivative, d : Ωk(M)→ Ωk+1(M), which satisfies:

1. For f ∈ Ω0(M), df is the differential of f .

2. For ω ∈ Ωk(M), η ∈ Ωl(M), we have d(ω ∧ η) = dω ∧ η + (−)kω ∧ dη.

3. d ◦ d = d2 = 0

Antiderivation On a graded algebra A =
⊕∞

k=1A
k, an antiderivation is an R-linear map D : A→ A

satisfying
D(ωτ) = D(ω)τ + (−1)kωDτ

for ω ∈ Ak and τ ∈ Al. The antiderivation is of degree m if deg(Dω) = deg(ω) = m, for all ω ∈ Ak.

Exterior Derivative Finally, we define it. Let ω ∈ Ωk(M). On a chart (U, φ), where ω = aIdx
I

such that I = {i1, ..., in}, we define
dω = daI ∧ dxI

on U . Recall that
daI ∧ dxI =

∑
1≤i1<..<ik≤n

da(i1,...,in) ∧ dxi1 ∧ · · · ∧ dxin

If k = 0, then yay, d is the differential on Ω0(M) as defined before, where on each chart we have

df =
∂f

∂xi
∧ dxi

To be honest, this formula means nothing to me, and that’s probably a bad thing. However, I do
know how to work with it, so the way it works is like this example:

Example 4.1. On R3, let β = ydx ∧ dz, then

dβ =
∂

∂x
(ydx ∧ dz) ∧ dx+

∂

∂y
(ydx ∧ dz) ∧ dy +

∂

∂z
(ydx ∧ dz) ∧ dz

= dx ∧ dz ∧ dy
= −dx ∧ dy ∧ dz

Corollary (Exterior Derivative Properties). There exists a collection of R-linear maps d : Ωk(M)→
Ωk+1(M) satisfying:

1. d : Ω0(M)→ Ω1(M) is the differntial.

2. d is an antiderivation of degree 1.

3. d2 = 0.

4. (A special bonus one!) Let F : N →M be a smooth map. Then on Ωk(M),

F ∗ ◦ d = d ◦ F ∗

Theorem 4.2 (Global Intrinsic Formula For The Exterior Derivative). Let ω ∈ Ωk(M). Then for
X0, ..., Xk ∈ X(M),

dω(X0, ..., Xk) =

k∑
i=0

(−1)i−1Xi(ω(X0, ..., X̂i, ..., Xk))−
∑

0≤i≤j≤k

(−1)i+jω([Xi, Xj ], X0, ..., X̂i, ..., X̂j , ..., Xk)
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4.2 Interior Multiplication

4.2.1 On a Vector Space

Let β ∈ Λk(V ∗) for k ≥ 2, let v ∈ V .

Interior Multiplication / Contraction Define ιv(β) ∈ Λk−1(V ∗) by

ιv(β)(v1, ..., vk−1) = β(v, v1, ..., vk−1)

for v1, ..., vk−1 ∈ V . This is called the interior multiplication or contraction of β with V . Note:

• If k = 0, then ιv(β) := 0

• If k = 1, then ιv(β) := β(v)

Proposition 4.3 (Properties of Interior Multiplication on a Vector Space). Fix v ∈ V .

1. If α1, ..., αk ∈ V ∗ = Λ1(V ∗), then

ιv(α1 ∧ · · · ∧ αk) =

k∑
i=1

(−1)i−1αi(v)α1 ∧ · · · ∧ α̂i ∧ · · · ∧ αk

2. ιv ◦ ιv = 0

3. given β ∈ Λk(V ∗) and γ ∈ Λl(V ∗),

ιv(β ∧ γ) = ιv(β) ∧ γ + (−1)kβ ∧ ιv(γ)

So, ιv : Λ∗(V ∗) → Λ∗(V ∗) is an antiderivation of degree (−1) on the graded algebra Λ∗(V ∗) whose
square is 0.

4.2.2 On Manifolds

Fix X ∈ X(M) and let ω ∈ Ωk(M).

Interior Multiplication of Forms Define ιXω as the k − 1-form given by

(ιXω)p = ιXpωp

For X1, ..., Xk−1 ∈ X(M), ιXω(X,..., Xk−1) = ω(X,X1, ..., Xk−1) ∈ C∞(M).
If k = 0, then ιXω = 0.
If k = 1, then ιXω = ω(X).

Proposition 4.4 (Properties of Interior Multiplication). ιX : Ωk(M)→ Ωk−1(M) satifies

1. It is R-linear.

2. ι(ω ∧ η) = ιX(ω) ∧ η + (−1)kω ∧ ιX(η), for ω ∈ Ωk(M) and η ∈ Ωl(M).

3. ιX ◦ ιX = ιX
2 = 0

So, ιX is an antiderivation on the graded algebra Ω∗(M) of degree (−1) such that ι2X = 0.

Also,
ι : X(M)× Ωk(M)→ Ωk−1(M)

is C∞-bilinear. This means that (ιXω)p depends only on Xp and p.

Proposition 4.5. For X,Y ∈ X(M),

ιX ◦ ιY + ιY ◦ ιX = 0
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4.3 Lie Derivative on Forms

Lie Derivative Given a k-form ω ∈ Ωk(M), the Lie derivative LXω ∈ Ωk(M) is a k-form defined
pointwise as follows:

LXω|p = lim
t→p

F ∗t (ωFt(p))− ωp
t

=
d

dt

∣∣∣∣
t=0

F ∗t (ωFt(p))︸ ︷︷ ︸
curve in Λk(T∗

pM)

We can feed it a tangent vector v at p. For v ∈ TpM ,

LXω(v) =
d

dt

∣∣∣∣
t=0

ωFt(p)(Ft∗v)

Theorem 4.6 (Properties of Lie Derivative). Let X ∈ X(M).

1. LX : Ω∗(M)→ Ω∗(M) is a derivation ( R-linear and satisfies LX(ω∧ η) = LXω∧ η+ω∧LXη).

2. LXd = dLX .

3. LX(ω(X1, ..., Xk)) = LXω(X1, ..., Xk) +
∑k
i=1 ω(X1, ...,LXXi, ..., Xk).

4. Cartan’s Magic Formula. LX = ιXd+ dιX .

5. LXιY − ιY LX = ι[X,Y ].

6. LXLY − LY LX = L[X,Y ]

Proposition 4.7. Let ω ∈ Ω1(M), let X,Y ∈ X(M). Then

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ])

Proposition 4.8. Given a 1-form f ∈ Ω0(M), we have LXf = X(f).

4.4 Summary!

We introduced 3 opertaors on Ω∗(M):

d : Ωk(M)→ Ωk+1(M) antiderivation of degree 1

ιX : Ωk(M)→ Ωk−1(M) antiderivation of degree − 1

LX : Ωk(M)→ Ωk(M) derivation

And we have this big list of facts. Good luck have fun:

• d2 = 0 = ι2X

• LXLY − LY LX = L[X,Y ]

• ιXιY + ιY ιX = 0

• dLX − LXd = 0

• LXιY − ιY LX = ι[X,Y ]

• dιX + ιXd = LX
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5 Just Got Here? Welcome to Orientation!

5.1 Orientation of Vector Spaces

Let V be an n-dimensional vector space. Recall that an orientation on Rn can be specified by fixing
an ordered basis.

Change of Basis Definition Let α = {v1, ..., vn}, β = {w1, ..., wn} be ordered bases of V . We
can define an equivalence relation: α, β specify the same orientation if Aβα =

[
[v1]β · · · [vn]β

]
has

positive determinant. Aβα satisfies:

1. vi = wjA
βj
αi

2. Aβα : [v]α 7→ [v]β

3. Aβα = (Aαβ)−1

Each class is called an orientation on V . If we fix γ ∈ Λn(V ∗) and let α, β be two ordered bases for
V , then

γ(v1, ..., vn) = det(Aαβγ(ω1, ..., ωn)

5.2 Orientation of Manifolds

Pointwise Orientation A pointwise orientation on M is a choice of orientation on each TpM . We
have 2|M | choices of pointwise orientation.

Orientation 1 An orientation on M is a pointwise orientation on M such that for all p ∈M , there
is a local frame X1, ..., Xn ∈ X(U) such that {X1q, ..., Xnq} is consistent with the orientation specified
on TqM , for all q ∈ U .

Orientation 2 An orientation on M is a pointwise orientation on M such that for all p ∈M , there

exists a chart (U, φ) near p such that
{

∂
∂x1

∣∣
q
, ..., ∂

∂xn

∣∣
q

}
is consistent with the orientation specified on

TqM , for all q ∈ U .

Oriented Atlas An atlas is called an oriented atlas if between any two charts (U, φ) and (V, ψ), the
transition map satisfied det(Dψ ◦ φ−1) > 0 on U ∩ V .

Orientation 3 An orientation on M is a pointwise orientation on M that admits an oriented atlas.

Equivalence On Oriented Atlases On the space of all oriented atlases, we can define the following
equivalence relation: A ∼ A′ specify the same orientation iff A ∪ A′ us another oriented atlas. Each
equivalence class represents an orientaton on M .

Orientation 4 An orientation on M is a pointwise orientation on M such that for all p ∈M , there
is a chart (U, φ) such that dx1

q ∧ · · · ∧ dxnq specifies the same orientation on TqM for all p ∈ U .

5.3 Orientability

Orientable A manifold M is orientable if it admits an orientation. An oriented manifold is an
orientable manifold that comes with an orientation.

Non-Examples The Möbius strip, the Klein bottle, and RPn are all examples of non-orientable
manifolds.

Proposition 5.1. An orientable manifolds admits 2C orientations, where C is the number of connected
components in M .

Theorem 5.2. A manifold is orientable iff there exists a C∞ nowhere vanishing n-form on M .
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6 Know Your Boundaries

Manifolds with boundary. This should be very similar to what we did at the beginning of the course,
but instead of Rn we now base it on a space with a convenient boundary.

The prototype of a manifold with boundary is the upper half space

Hn = {(x1, ..., xn) ∈ Rn |xn ≥ 0}

with the subspace topology.

1. Points with xn > 0 are called interior points of Hn, denoted by (Hn)◦

2. Points with xn = 0 are called boundary points of Hn, denoted by ∂Hn.

Topological n-Manifold with Boundary A topological n-manifold with boundary is a second-
countable and Hausdorff topological space that is locally Hn.

Smooth Manifold with Boundary A smooth manifold with boundary is a topological manifold
with boundary together with a maximal atlas.

1. A point p ∈M is an interior point if there exists a chart (U, φ) near p such that φ(p) ∈ (Hn)◦

2. A point q ∈M is a boundary point if there exists a chart (V, ψ) near q such that ψ(q) ∈ ∂Hn

Proposition 6.1. The notions of interior and boundary points is well-defined and independent of
coordinates. They partition M into M◦ = {interior points} and ∂M = {boundarypoints}.

Things That Carry Over The things that carry over to a manifold with boundary as expected
are: smooth maps, tangent vectors, T ∗pM , embedded / regular submanifolds.

Theorem 6.2. If M is an n-dimensional manifold with boundary, then ∂M is an (n−1)-dimensional
submanifold of M without boundary, with the abuse of notation i∗,p(Tp∂M) = Tp∂M .

6.1 Orientation On The Boundary

Let p ∈ ∂M .

Inward Pointing We say Xp ∈ TpM is inward pointing if Xp 6∈ Tp∂M and there exists some
c : [0, ε]→M such that c(0) = p and c′(0) = Xp.

Outward Pointing We say Xp ∈ TpM is outward pointing if −Xp is inward pointing.

Proposition 6.3. On any manifold with boundary, there exists a C∞ outward-pointing vector field
along ∂M .

Proposition 6.4 (Induced Boundary Orientation). Let M be an oriented n-manifold with boundary.
If ω is an orientation form (a nowhere-vanishing n-form consistent with the fxied orientation on M)
and X is a C∞ outward-pointing vector field along ∂M , then ιXω is a smooth nowhere vanishing n−1
form on ∂M . Thus, ∂M is orientable, and ιXω is called the induced orientation.

Explanations on Oriented Charts Let (U, φ) be a chart, then dx1 ∧ · · · ∧ dxn is an orientation
form on U . Let X = − ∂

∂xn , then

ι− ∂
∂xn

(x1 ∧ · · · ∧ dxn) = (−1)nx1 ∧ · · · ∧ dxn−1

is the n−1 orientation form on boundary. So (U ∩∂M,ψ = ((−1)nx1, ..., xn)) is a chart in the oriented
atlas of ∂M with respect to the boundary orientation.

Thumb I don’t have good intuition for how this choosing of an outward vector works, but in 3-
dimensions I think of it as comparing the left and right hand rules. Depending on how my surface is
oriented, choosing which way my thumb points necessarily dictates whether I am using my left hand
or my right hand.
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7 Integration

7.1 One Chart, One Dimension

I think I will refer to my handwritten notes for detail here. Sorry to disappoint.

7.2 Generalization

Let ω ∈ Ωn(M) be compactly supported, where M is an oriented manifold. Let {(Uα, φα)} be an
oriented atlas, and let {ρα} be a partition of unity subordinate to {Uα}α. Then each ραω is compactly
supported in each chart Uα, so we can make sense of∫

M

ραω :=

∫
ρα(x1,...,xn)

ω

(
∂

∂x1
, ...,

∂

∂xn

) ∣∣∣∣
φ−1(x1,...,xn)

dx1 · · · dxn

And we can define ∫
M

ω :=
∑
α

∫
M

ραω

Proposition 7.1 (Properties of the Integral). The integral as defined above satisfies:

1.
∫
M
ω is independent of the partition of unity and the oriented atlas

2. The sum is finite, since {Uα} is an open cover of supp(ω)

3.
∫
−M ω = −

∫
M
ω

4. The integral is R-linear, i.e. for all a ∈ R, ω, η ∈ Ωn(M) compactly supported, we have that∫
M

aω + η = a

∫
M

ω +

∫
M

η

5. Let F : N →M and let ω ∈ Ωn(M) be compactly supported, then∫
M

ω =

∫
N

F ∗ω

6. If M can be covered by one chart U up to a measure-0 set then∫
M

ω =

∫
U

ω

7.3 Stokes

Theorem 7.2 (Stokes’ Theorem). Let M be an oriented manifolds with boundary, and let ∂M be the
boundary with the induced boundary orientation. Let ω ∈ Ωn−1(M) be compactly supported, and let
i : ∂M ↪→M be the inclusion map. Then∫

M

dω =

∫
∂M

i∗ω =

∫
∂M

ω
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